-
Tindell S.J., Rouchka E.C. and Arkov A.L. Glial granules contain germline proteins
in the Drosophila brain, which regulate brain transcriptome. Communications Biology,
3(1): 699 (2020).
-
Vo H.D.L., Wahiduzzaman, Tindell S.J., Zheng J., Gao M. and Arkov A.L. Protein components
of ribonucleoprotein granules from Drosophila germ cells oligomerize and show distinct
spatial organization during germline development. Scientific Reports, 9(1): 19190
(2019).
-
Arkov A.L. RNA selection by PIWI proteins. Trends in Biochemical Sciences, 43: 153-156
(2018).
-
DeHaan H., McCambridge A., Armstrong B., Cruse C., Solanki D., Trinidad J.C., Arkov
A.L. and Gao M. An in vivo proteomic analysis of the Me31B interactome in Drosophila
germ granules. FEBS Lett., 591: 3536-3547 (2017).
-
Zheng J., Gao M, Huynh N, Tindell S.J., Vo H.D.L, McDonald W.H. and Arkov A.L. In
vivo mapping of a dynamic ribonucleoprotein granule interactome in early Drosophila
embryos. FEBS Open Bio, 6: 1248–1256 (2016)
-
Gao M., Thomson T.C., Creed T.M., Tu S., Loganathan S.N., Jackson C.A., McCluskey
P., Lin Y., Collier S.E., Weng Z., Lasko P., Ohi M.D. and Arkov A.L. Glycolytic enzymes
localize to ribonucleoprotein granules in Drosophila germ cells, bind Tudor and protect
from transposable elements. EMBO Reports, 16: 379-386 (2015).
-
Gao M., McCluskey P., Loganathan S.N., and Arkov A.L. An in vivo crosslinking approach
to isolate protein complexes from Drosophila embryos. Journal of Visualized Experiments,
Apr 23; (86). doi: 10.3791/51387 (2014).
-
Gao M. and Arkov A.L. Germ cell formation in posterior of early Drosophila embryo.
Molecular Reproduction and Development, 80: 589 (2013).
-
Gao M. and Arkov A.L. Next generation organelles: Structure and role of germ granules
in the germline. Molecular Reproduction and Development, 80: 610-623 (2013).
-
Creed T.M., Loganathan S.N., Varonin D., Jackson C.A. and Arkov A.L. Novel role of
specific Tudor domains in Tudor-Aubergine protein complex assembly and distribution
during Drosophila oogenesis. Biochemical and Biophysical Research Communications,
402: 384-389 (2010).
-
Arkov A.L. and Ramos A. Building RNA-protein granules: insight from the germline.
Trends in Cell Biology, 20: 482-490 (2010)
-
Thomson T., Liu N., Arkov A., Lehmann R. and Lasko P. Isolation of new polar granule
components in Drosophila reveals P body and ER associated proteins. Mechanisms of
Development, 125: 865-873 (2008).
-
Arkov A.L., Wang J.Y.S., Ramos A. and Lehmann R. The role of Tudor domains in germline
development and polar granule architecture. Development, 133: 4053-4062 (2006).
-
Arkov A.L., Hedenstierna K.O.F and Murgola E.J. Mutational evidence for a functional
connection between two domains of 23S rRNA in translation termination. Journal of
Bacteriology, 184: 5052-5057 (2002).
-
Murgola E.J., Arkov A.L., Chernyaeva N.S., Hedenstierna K.O.F. and Pagel F.T. rRNA
functional sites and structures for peptide chain termination. In R. A. Garrett, S.
R. Douthwaite, A. Liljas, A. T. Matheson, P. B. Moore, H. F. Noller (ed.), The Ribosome:
structure, function, antibiotics and cellular interactions. ASM Press, Washington,
D.C. pp. 509-518 (2000).
-
Arkov A.L., Freistroffer D.V., Pavlov M.Yu., Ehrenberg M. and Murgola E.J. Mutations
in conserved regions of ribosomal RNAs decrease the productive association of peptide-chain
release factors with the ribosome during translation termination. Biochimie, 82: 671-682
(2000).
-
Arkov A.L. and Murgola E.J. Ribosomal RNAs in translation termination: facts and hypotheses.
Biochemistry (Moscow), 64: 1354-1359 (1999).
-
Arkov, A.L., Freistroffer, D.V., Ehrenberg, M. and Murgola, E.J. Mutations in RNAs
of both ribosomal subunits cause defects in translation termination. EMBO Journal,
17: 1507-1514 (1998).
-
Arkov, A.L., Mankin, A. and Murgola, E.J. An rRNA fragment and its antisense can alter
decoding of genetic information. Journal of Bacteriology,180: 2744-2748 (1998).
-
Murgola, E.J., Pagel, F.T., Hijazi, K.A., Arkov, A.L., Xu, W. and Zhao, S. Q. Variety
of nonsense suppressor phenotypes associated with mutational changes at conserved
sites in Escherichia coli ribosomal RNA. Biochem. Cell Biol., 73: 925-931 (1995).
-
Arkov, A.L., Korolev, S.V. and Kisselev, L.L. 5’ Contexts of Escherichia coli and
human termination codons are similar. Nucleic Acids Research, 23: 4712-4716 (1995).
-
Arkov, A.L., Korolev, S.V. and Kisselev, L. L. Termination of translation in bacteria
may be modulated via specific interaction between peptide chain release factor and
the last peptidyl tRNA(Ser/Phe). Nucleic Acids Research, 21: 2891-2897 (1993).