Biomarkers for Air Pollutants: Development of Hemoglobin Adduct Methodology for Exposure Assessment

Harrell E. Hurst, Ph.D. Dept. Pharmacology & Toxicology University of Louisville School of Medicine

Biomarker Definition:

 Measurable internal indicator of change at molecular or cellular level to detect key event(s) linking specific exposure to health outcome

Bennett and Waters, Environ. Health Perspectives 108: 907-910 (2000)

Biomarkers in Environmentally-Induced Disease

Hemoglobin

4 Protein Chains:

2 α Chains 141 AA MW=15100 daltons

2 β Chains 146 AA MW=15851 daltons

Hemoglobin Adduct as Biomarker Hb:

- Abundant accessible protein for biomarker
- Monitors recent past exposure over red blood cell lifetime:
 - 120 days in human
- Exposure biomarker related to mechanism
 - Most cancer-causing chemicals are electrophilic
- Traps electrophilic chemicals and reactive metabolites at nucleophilic sites:
 - N-terminal amino acids on α and β chains (Valine)
- Surrogate monitor for mutagenic DNA adducts

Chloroprene

- CAS 126-99-8
- M.W. = 88.54
- B.P. = 59.4°C
- Vapor pressure = 174 mm Hg at 20°C
- Monomer for production of:
 - Polychloroprene
 - Neoprene
- Autopolymerizes !
- Stored at < 0 °C under N₂ with polymerization inhibitors
- Present in Jefferson Co. air from fugitive emissions

2-chlorobuta-1,3-diene

Chloroprene Toxicity

- Inhalation subchronic lethal concentrations:
 - ~ 500 ppm for rats, \leq 200 ppm mice
- Toxic effects:
 - Narcosis and hypoactivity, Weight loss
 - Nasal epithelial degeneration
 - Hepatocellular centrolobular necrosis
 - Forestomach squamous epithelial hyperplasia
 - Thymic necrosis, Myocardial hypertrophy
 - Lung & liver non-protein sulfhydryl content (glutathione) decrease

Valentine and Himmelstein, Chem.-Biol. Interact. 135-135: 81-100 (2001)

Chloroprene Bioactivation

Chloroprene is metabolized by cytochrome P_{450} oxidative enzymes to a reactive electrophilic epoxide, chlorovinyloxirane, also known as chloroethenyloxirane.

Chloroprene Metabolism

- Toxic activation by CYP2E1 to CVO
 - Chlorovinyloxirane (CVO) is a relatively long-lived, reactive electrophile
 - CVO reacts with nucleophilic sites in DNA and proteins

Detoxification of CVO occurs through:

- Conjugation with glutathione
- Hydrolysis by epoxide hydrolase

Chloroprene Biomarker Strategies

- Use Hb N-terminal valine adduct as:
 - Biomarker of chloroprene exposure with activation to epoxide (CVO)
- Biomarker analytical approach
 - Isolate globin from blood exposed to CVO
 - Use Edman reaction for Hb N-terminal valine cleavage and derivatization for gas chromatographic separation
 - Use mass spectrometry for detection
 - Synthesize standards from valine peptides

Biomarker Basis: Epoxide Reactions

Adducts Depend on Epoxide Ring Opening

2-(1-chlorovinyl)oxirane

Edman Reaction:

Cleave N-Terminal Amino Acid Form Stable Cyclic Derivative

1-[2-chloro-1-(hydroxymethyl)prop-2-en-1-yl]-5-isopropyl-3-(pentafluorophenyl)-2-thioxoimidazolidin-4-one

1-(3-chloro-2-hydroxybut-3-en-1-yl)-5-isopropyl-3-(pentafluorophenyl)-2-thioxoimidazolidin-4-one

Additional Reaction Required for GC/MS: Trimethylsilylation of Hydroxyl for Volatility

Biomarker Reaction Review

- 1. Edman degradation
 - Cleaves N-terminal adduct-valine
 - Produces stable cyclic derivative
- 2. Hydroxyl group derivatization
 - Converts –OH to –OTMS for volatility
- Detect and measure by GC/MS

 (gas chromatography / mass spectrometry)
 using selected ion monitoring (SIM)

Analytical Biomarker Standards

- Reference standard material
 - Tri-peptide Valine-Tyrosine-Valine (VYV)
 - Reacted with CVO to give VYV-CVO adduct standard
 - Purified to obtain gravimetric weight
- Internal standard (added to each sample)
 - Valine enriched with deuterium (atomic mass = 2) in place of hydrogen (mass = 1)
 - Used 99% enriched d₈-valine
 - Reacted with CVO for d₈-valine-CVO

Mass Spectra of CVO-Valine Derivatives

Negative NH₃ CI GC/MS

Peak 1 Rt = 12.82 min m/z 318, 372, 500 (in order of intensity)

Peak 2 Rt = 12.96 min m/z 500, 464, 318 (in order of intensity)

Stable Isotopic Standardization Possible only with Mass Spectrometry

Selected Ion Monitoring GC/MS

CVO-Adduct Assay Standard Response

Negative NH₃ Ionization SIM GC/MS CVO-Valine Adduct using VYV-CVO as Standard

Status of Project

- Prototype Val-CVO assay successful
 - Detects 1 pmole of Val-CVO adduct reliably
 - Should enable detection from ~ 5 mg Hb, depending on level of Hb-adduct formed
- Refinements are necessary for practical sample processing
- Utility still to be demonstrated
 - Have measured 25 pmoles Val-CVO adduct from in vitro treatment of mouse hemoglobin

Acknowledgements

- Jian Cai, Ph.D.
- Matthew Himmelstein, Ph.D.
- KY EPA EPSCoR Program
- EPA EPSCoR Grant Number R-82941091-0
 - Although the research described in this article has been funded wholly or in part by the Unites States Environmental Protection Agency through grant/cooperative agreement R-82941091-0, it has not been subjected to the Agency's required peer and policy review and therefore does not necessarily reflect the views of the Agency and no official endorsement should be inferred.

Synthetic Rubber Producers

- The (1-chloroethenyl)oxirane was provided by the International Institute of Synthetic Rubber Producers' Chloroprene Scientific Oversight Committee through Matthew Himmelstein of DuPont Haskell Laboratory.
- UofL Office of the Vice President for Research